On Carleman Linearization of Linearly Observable Polynomial Systems

نویسندگان

  • Dorota Mozyrska
  • Zbigniew Bartosiewicz
چکیده

Carleman linearization is used to transform a polynomial control system with output, defined on n-dimensional space, into a linear or bilinear system evolving in the space of infinite sequences. Such a system is described by infinite matrices with special properties. Linear observability of the original system is studied. It means that all coordinate functions can be expressed as linear combinations of functions from the observation space. It is shown that this property is equivalent to a rank condition involving matrices that appear in the Carleman linearization. This condition is equivalent to observability of the first n coordinates of the linearized system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explicit Error Bounds for Carleman Linearization

We revisit the method of Carleman linearization for systems of ordinary differential equations with polynomial right-hand sides. This transformation provides an approximate linearization in a higher-dimensional space through the exact embedding of polynomial nonlinearities into an infinite-dimensional linear system, which is then truncated to obtain a finite-dimensional representation with an a...

متن کامل

Carleman linearization and normal forms for differential systems with quasi-periodic coefficients

We study the matrix representation of Poincaré normalization using the Carleman linearization technique for non-autonomous differential systems with quasi-periodic coefficients. We provide a rigorous proof of the validity of the matrix representation of the normalization and obtain a recursive algorithm for computing the normalizing transformation and the normal form of the differential systems...

متن کامل

Linearization of M-LINC Systems Using GMP and Particle Swarm Optimization for Wireless Communications

In this paper, an efficient algorithm for the efficiency maximization of the multilevel linear amplification using nonlinear components (M-LINC) systems is proposed regarding the linearity of the system. In this algorithm, we use the generalized memory polynomial (GMP) to provide a behavioral model for the power amplifier (PA) and calculate the power spectral density (PSD) of the output signal ...

متن کامل

Gaussian Stochastic Linearization for Open Quantum Systems Using Quadratic Approximation of Hamiltonians

This paper extends the energy-based version of the stochastic linearization method, known for classical nonlinear systems, to open quantum systems with canonically commuting dynamic variables governed by quantum stochastic differential equations with non-quadratic Hamiltonians. The linearization proceeds by approximating the actual Hamiltonian of the quantum system by a quadratic function of it...

متن کامل

Some Combinatorial Aspects of Discrete Non-linear Population Dynamics

Motivated by issues arising in population dynamics, we consider the problem of iterating a given analytic function a number of times. We use the celebrated technique known as Carleman linearization that turns (for a certain class of functions) this problem into simply taking the power of a real number. We expand this method, showing in particular that it can be used for population models with i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007